On a $\zeta$ function related to the continued fraction transformation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continued-fraction Expansions for the Riemann Zeta Function and Polylogarithms

It appears that the only known representations for the Riemann zeta function ζ(z) in terms of continued fractions are those for z = 2 and 3. Here we give a rapidly converging continued-fraction expansion of ζ(n) for any integer n ≥ 2. This is a special case of a more general expansion which we have derived for the polylogarithms of order n, n ≥ 1, by using the classical Stieltjes technique. Our...

متن کامل

The Random Continued Fraction Transformation

We introduce a random dynamical system related to continued fraction expansions. It uses random combination of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces as well as the dynamical properties of the system.

متن کامل

Related factors to continued breastfeeding in infants

  Introduction: Breast milk is the best nutrition for infants. Although feeding mostly begins with breast milk but its continuation is ignored in some cases. In this regard, identification of related factors to breastfeeding is important.  Objective: The purpose of this study is to determine related factors to continuing breastfeeding in hospitalized infants.    ...

متن کامل

A Closure Problem Related to the Riemann Zeta-function.

It is rather obvious that any property of the Riemann zeta-function may be expressed in terms of some other property of the function p(x) defined as the fractional part of the real number x, i.e., x = p(x) mod 1. This note will deal with a duality of the indicated kind which may be of some interest due to its simplicity in statement and proof. In the sequel, C will denote the linear manifold of...

متن کامل

A q-CONTINUED FRACTION

Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1. Define H1(a, b, c, d, q) := 1 1 + −abq + c (a + b)q + d + · · · + −abq + cq (a + b)qn+1 + d + · · · . We show that H1(a, b, c, d, q) converges and 1 H1(a, b, c, d, q) − 1 = c − abq d + aq P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j . We then use this result to deduce various corollaries, including the followi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Soci&#233;t&#233; math&#233;matique de France

سال: 1976

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.1825